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Control over electric field in traveling wave applicators
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Abstract. A method of optimal material design is applied to the problem of controlling the distribution of the
electric field within a material heated by microwaves in closed cavities. Analytical and computational procedures
are presented for a layer in a single-mode rectangular waveguide applicator. These determine the optimal placing
and micro-geometry of composite controlling materials. The particular case of a lossless layer is illustrated numer-
ically: it is shown that the controlling material becomes uniform with a dielectric constant which always exceeds
the layer to be heated.
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1. Introduction

Microwave heating is known to be a unique technique of volumetric thermal processing of di-
electric materials [1, 2]. In many cases, a uniform temperature distribution within the product
is required, and the literature on microwave processing suggests various means to achieve an
even pattern of heat release.

Mechanical devices like stirrers and turntables provide an empirical solution to the problem
in its non-deterministic setup. The multiple modes are thoroughly mixed to achieve a random
field distribution and therefore to increase the probability of uniform heat release. Among
other methods working on “statistical" principles, there should be mentioned active packaging
[3], monitoring of the microwave power level [4], the variable frequency [5], and the multiple
input of energy [1, 6]. Despite evident attractive features, the practical implementation of these
methods showed the lack of uniformity in a number of important cases. These methods do not
provide an effective control adapted to a specific material, and are based on a purely intuitive
expectation that the diversity of participating modes will secure the uniformity of heat release
in space-time.

There have also been attempts to improve the temperature patterns generated by a single
mode. In [7, 8], there was considered a possibility of creating the uniform field by formation
of the TEM mode in a rectangular waveguide partially filled with dielectric slabs; a similar
technique was used in [9] for a resonant cavity. Such approaches have not, however, included
a realistic means to eliminate the higher modes that may well emerge once the operating
chamber is filled with a processed material. For this reason in particular, the TEM mode has a
practical implementation only in applications related to irradiation [10].

The supplementary metal ridges [11] and grids [12], the mechanical change of the cham-
ber’s size [13], and the use of evanescent modes [14] are among other means used to correct
fields generated by deterministic modes. All these efforts are insufficient because the geom-
etry of material inclusions as well as their deployment throughout the operating chamber are
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motivated by engineering experience alone, both theoretical and experimental. In spite of its
obvious merits, this experience is limited, and it therefore fails to exhause completely the
possibilities of improvement intrinsic in the system itself.

In order to derive new methods for creating uniform fields, a rigorous mathematical ap-
proach is necessary. Sophisticated computer modeling [15–18] based on numerical discretiza-
tion may be efficient for the analysis, but it cannot give direct recommendations as to how the
system should be changed to guarantee improvement of the temperature distribution within the
product. The need to apply some kind of optimization to arrange more effective processing
was recognized in [19]. Straightforward computer optimization incorporating complete nu-
merical solution of the electromagnetic problems still appears to be too time-consuming. For
this reason, the authors dealing with optimization of microwave heating restricted themselves
to some faster and simpler computational kernels, such as methods of moments [17], or models
bypassing Maxwell’s equations alltogether [20].

The present paper suggests an effective way to put the temperature distribution under direct
control. The required formalization emerges from the idea of optimal material design (OMD)
[21]. In the context of microwave thermal processing, the goal of OMD is to find an optimal
placing of supplementary dielectric materials within a part of the operating chamber in order
to focus the electromagnetic field appropriately onto the heated product to maintain the desired
(e.g., uniform) heat release within the processed material. Control over the material properties
implemented locally produces a substantially stronger influence upon the electromagnetic
field than control over the distribution of the electromagnetic power supplied directly from
generator [20] or over the field pattern in the structures with the optimized boundary shape
[22, 23].

Unlike computer optimization, this approach allows one to avoid multiple numerical so-
lution in a computational “cycle", but from the beginning offers the optimality conditions
that characterize the desired solution. In contrast to attempts to enhance the electric field
uniformity by using dielectric slabs partially filling the operating chambers [7–9, 24, 25],
the location, structure, and permittivity of a focusing material are determined by the OMD
method. They are found, not empirically but rigorously, as the means guaranteeing the re-
quired heat release. The homogenization method relevant to optimal material design has been
used for optimization of magnetic devices at low frequencies in [26]. The OMD principles
are applied for the first time to the problem of the control of high frequency electromagnetic
fields.

2. Background

In general, microwave heating is a very complicated process depending on many physical
parameters. The processed material may have non-uniform composition, non-smooth con-
figuration, and temperature-dependent complex permittivity. The heating chambers differ in
geometry, type of field excitation, the placement (orientation) of the product, etc. The problem
of control of microwave heating becomes hard to formalize in such a general setting. There-
fore, we narrow the problem and concentrate on fully deterministic, non-random processes.
Specifically, we assume that:
i. the processed samples may have arbitrarily complex composition, but the distribution of

their material properties is well determined;
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Figure 1. Closed microwave heating cavity: focusing structure and heated material.

ii. the shape of the samples is known, that is, the boundary conditions can be adequately
posed;

iii. a finite number of propagating modes is allowed to be subject to deterministic control.
With these assumptions it is possible to cover many practically significant situations. In

order to demonstrate the capabilities of optimal material design in controlling of microwave
heating, we further specify the problem and consider waveguide systems that appear to be the
most suitable for setting the deterministic wave patterns.

The OMD concept says that the field focusing can be successfully implemented with the
aid of an assemblage of two dielectric materialsD1 andD2 differing in their permittivities and
appropriately distributed within some part F of an operating chamber embracing the heating
zone P occupied by the processed sample (Figure 1). The layout of these materials serves
as the key factor controlling the spatial distribution of the field, and, consequently, the heat
release within P . Finding this layout is the main goal of the approach.

We are looking for the disposition of the focusing materials in F capable of minimizing
the difference between the acting heat release q(x, t) within P and some desired distribution
q0(x, t). Such a difference becomes the cost (objective) functional; as an example, one may
consider the mean square difference between the two distributions:

I =
∫ t1

0

∫
P

|q(x, t) − q0(x, t)|2dxdt, (1)

where t1 denotes the period of heating. This functional combines both spatial and temporal
variations of the field and may be equally applied in the presence and/or absence of the
temperature dependence of the product’s permittivity. Along with (1), other types of cost
functionals, e.g., linear functionals, may be introduced.
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The goal of design is to minimize the functional by an appropriate layout of D1 and D2 in
F . The field distribution within F and P is governed by the field equations and the relevant
boundary conditions. The presence of such constraints is the key factor that distinguishes
problems of optimal material design from traditional variational problems of minimization of
functionals. In other words, the quantity q in (1) should be chosen not among the functions
possessing just conventional smoothness properties, but it should rather be sought among
solutions to a side boundary-value problem depending upon control. The search for an optimal
q(x, t) therefore reduces to the search for optimal control. The complexity of this problem is
due to the implicit influence produced by a control upon the heat release: this influence comes
through the boundary-value problem and is not reflected directly in the functional through its
explicit dependence upon control. Such a concept is different from the approach addressed
in many publications (e.g., [22, 27]) where the functional appears to be explicitly control-
dependent.

The typical optimal layouts possess one common feature: certain parts of F (or the whole
of it), become occupied by composites assembled from D1 and D2 [21]. Composites are
formations assembled from original materials distributed on a spatial microscale. The rel-
evant microgeometries may vary; in particular, we shall consider alternating layers of two
different materials forming a laminate structure. The width of the layers should be chosen
small compared to the wavelength. The appearance of composites is crucial: they appropri-
ately redistribute the electromagnetic field everywhere, particularly in P , to the final effect of
minimization of the cost functional (1).

In our problem, Maxwell’s equations are solved for domains F and P under suitable
boundary conditions. Controls (permittivities of the focusing structure) are distributed through-
out F , whereas the heat release to be controlled is distributed over P . Material properties of
the substance within P are assumed given. The heat release generates the temperature pattern
within the product according to the heat equation.

The domain F is occupied by two dielectrics D1 andD2 with different permittivities ε1 and
ε2; we look for their layout in F that finally makes the distribution of temperature within the
domain P as close as possible to the desired pattern. This influence is implemented through
the direct effect produced by a non-uniform dielectric material in F upon the field distribution,
and consequently, the heat release within P .

Since the heat release is proportional to the imaginary part of complex permittivity and the
squared magnitude of the electric field, the control of microwave heating can be eventually
implemented through the control of the electric field. In this paper, we are interested in evening
up the electric field of the dominant mode in a dielectric layer in a rectangular waveguide.
However, a conceptually similar approach could be used to obtain uniform or other desirable
field distributions in the processed material of other configurations.

3. Analysis

Consider a rectangular TE10 applicator with sides a and b. The material to be processed is
assumed to be a uniform layer with permittivity εp = ε ′

p − iε ′′
p and permeability µ = 1; it

occupies domain P(x ∈ [x1, x2], 0 < x1 < x2 < a, y ∈ [0, b]) of the cross-section of the
waveguide (Figure 2).

Generally, the dielectric filling generates conditions for propagation of both dominant and
higher modes. Any change in the filling’s parameters (permittivities or/and geometry) may
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Figure 2. Cross-section of a rectangular traveling wave applicator with focusing (F) and processed (P )materials.

affect the number of propagating modes, and this influence should be taken into consideration,
particularly, when we optimize parameters of the focusing structure. The electric field in P is
known to be a superposition of propagating modes, and to make this field uniform we have
to apply a sophisticated composite layout aimed to even up these combined modes. It seems
to be reasonable to develop a simplified analysis for a single (dominant) mode. This can be
achieved, for example, by an appropriate change of the waveguide’s dimensions preserving,
however, the material filling pattern. For the higher modes, it would be possible to generate a
similar analysis following the scheme available for the dominant mode.

To specify the starting points, we notice that the orientation of electric and magnetic vectors
in the dominant mode replicates the orientation of these vectors in the TE10 mode in an empty
waveguide: they are parallel to the y- and x-axes, respectively. In these circumstances, the
general method shows that the material layout that will not destroy the above orientation of the
field vectors may only be a lamination with the layers along the y-axis. A uniform dielectric
represents a special case of lamellar layout.

Therefore, our goal is to locate controlling dielectric materials in two lateral domains F :
(0 < x < x1, 0 < y < b, and x2 < x < a, 0 < y < b), in such a way as to obtain a uniform
distribution of the electric field of the dominant mode within P .

The electric field has only a y-component

Ey(x) = u(x)e−iγ z, (2)

where u(x) is the complex magnitude, γ = β − iα is the propagation factor, β is the phase
constant, and α is the attenuation constant. The magnitude u satisfies the Helmholtz’s equation

u′′(x)+ h(x)u(x) = 0 (3)

with u = v − iw, h = ω2ε − γ 2 = f − ig, where ω is circular frequency. In (3), ε is defined
as

ε(x) =



εF1, or εF2, for x ∈ (0, x1),

εP , for x ∈ (x1, x2),

εF1, or εF2, for x ∈ (x2, a).

(4)
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For the TE10 mode, the following boundary conditions hold:

u(0) = 0,

u(x1)|+− = 0, u′(x1)|+− = 0,

u(x2)|+− = 0, u′(x2)|+− = 0,

u(a) = 0.

(5)

Within the processed material, we require the uniform field:

u(x) = 1; x ∈ (x1, x2). (6)

This means that the minimal requirement for the functional (1) might be expressed as:∫ x2

x1

[u(x) − 1]2dx → min. (7)

Assume that requirement (6) is satisfied by a uniform controlling material F . Then we
apply (2) to the processed material, where the field u is assumed constant. Since u′′ = 0 , we
conclude that h = 0 in P , i.e.

ω2ε ′
P = β2 − α2, ω2ε ′′

P = 2αβ. (8)

Then, in the domain F ,

u = A cos
√
hx + B sin

√
hx (9)

is the solution to (2). Given the boundary condition u(0) = 0, we obtain that A = 0. Because
of (6) and the continuity of u′ across the points x1 and x2, we conclude that

cos
√
hx1 = 0,

√
h = π

2x1
, (10)

and, therefore, Imh = 0 within F . By virtue of (8), this means that ω2ε ′′ = 2αβ, and (9) now
shows that ε ′′

F = ε ′′
P . Thus, the field within P may become uniform only provided that the

controlling material possesses the same losses as the processed one, at least provided that the
material is uniform, as we assumed above.

Therefore, we arrive at the following two options. We may allow for the absorbing con-
trolling material, and thus secure the field uniformity in the processed layer. Alternatively,
we may admit some non-uniformity of the field within the processed material by preserving
the controlling material lossless (or possessing negligible losses) and at the same time being
non-uniform. The latter option appears to be preferable because otherwise we would agree
on substantial heating of the controlling materials which would be practically unfeasible. The
non-uniformity of the focusing structure thus becomes a decisive factor affecting the degree
of non-uniformity of the field within the processed material.

Because of the symmetry with respect to the mid-line x = a/2, we consider the left half of
the waveguide cross-section (Figure 3). Specifically, we assume that there are two materials
D1 and D2 in F with εF1 = ε ′

F1 − iε ′′
F1 and εF2 = ε ′

F2 − iε ′′
F2 that alternate in vertical layers.

The average quantities

f = mf1 + (1 −m)f2, g = mg1 + (1 −m)g2 (11)
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Figure 3. Two domains in the symmetric half-interval for the applicator in Figure 2.

are introduced, where m denotes the volume fraction of D1 with f1 and g1 in the lamination
assemblage. The average quantities

v = mv1 + (1 −m)v2, w = mw1 + (1 −m)w2 (12)

satisfy Equation (3) with h = f − ig = m1h1 + (1 −m)h2, and it becomes:

v′′ + f v − gw − i(w′′ + fw + gv) = 0. (13)

This complex second-order equation can be rewritten as the equivalent first order system


v′ = p,

p′ = −f v + gw,

w′ = q,

q ′ = −gv − fw

(14)

by introduction of the auxiliary variables p, q. In the domain F , the right-hand sides of these
equations depend by (11) on the volume fraction m = m(x) that serves as the control subject
to the inequalities

0 ≤ m(x) ≤ 1. (15)

The field in the domain P is governed by the system (14) in which f and g take the constant
values fP and gP , respectively, specified for the processed material. In the domain F, f and
g are specified by the materials in the lamination assemblage, that is:

fP = ω2ε ′
P + α2 − β2, gP = ω2ε ′′

P − 2αβ,

fFi +ω2ε ′
F i + α2 − β2, gF i = ω2ε ′′

F i − 2αβ, i = 1, 2.
(16)

For any fixed control m(x), we look for the solution {v(x), p(x),w(x), q(x)} of (14) for
both F and P , satisfying boundary conditions (5) which can now be rewritten as:

v(0) = w(0) = 0,

v(x1)|+− = w(x1)|+− = p(x1)|+− = q(x1)|+− = 0,

p(a/2) = q(a/2) = 0.

(17)

Optimization means finding the control m(x) subject to constraints (15) that minimizes the
functional (7) which can be expressed now as follows:
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I =
∫ a/2

x1

(√
v2 + w2 − 1

)2
dx. (18)

This functional characterizes the deviation (in the L2-norm) of the magnitude of the field
from the constant value 1 in the domain P occupied by the processed material. Following the
standard procedure of the theory of optimal design [21], we construct the Hamiltonian H with
the aid of the conjugate variables (Lagrange multipliers) V,P,W,Q, and the factor ρ = ρ(x)

defined as 0 within F and 1 within P . The conjugate variables should satisfy the system:


V ′ = 2ρv√
v2 + w2

(√
v2 + w2 − 1

)
+ fP + gQ

P ′ = −V

W ′ = 2ρw√
v2 + w2

(√
v2 + w2 − 1

)
− gP + fQ

Q′ = −W

(19)

along with the boundary conditions:

P(0) = Q(0) = 0,

V (x1)|+− = W(x1)|+− = P(x1)|+− = Q(x1)|+− = 0,

V (a/2) = W(a/2) = 0.

(20)

The expression for H takes the following form:

H = −ρ(v2 + w2 − 1)+ pV − (vP + wQ)fF2 + (wP − vQ)gF2 +mH1 (21)

with

H1 = −(vP + wQ)+fF + (wP − vQ)+gF , (22)

where

+fF = fF1 − fF2; +gF = gF1 − gF2 . (23)

The necessary condition of optimality [21] now indicates that there may be three ranges
for m given by:

i. If H1 < 0, then m = 0, and F is occupied by material D2.

ii. If H1 > 0, then m = 1, and F is occupied by material D1.

iii. If H1 = 0, the singular range takes place.
Additional analysis shows that in the singular range, the volume fraction m(x) is calculated
analytically as a special combination of the original and conjugate variables and the material
parameters:

m = ρ(v2 + w2)+fF + (Vp +Wq)+fF − (V q −Wp)+gF

(Pv +Qw)[(+fF )2 + (+gF )2] − g2

+gF
. (24)

The option (i) shows that at those parts of F , where H1 < 0, material D2 alone should be
applied; at those parts where H1 > 0, there should be placed D1 alone. If, however, H1 = 0 at
some part of F , then these parts should be occupied by a layered composite assembled from
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D1 and D2 taken, respectively, with the volume fractions m and (1 − m). So the behavior of
H1 on F specifies the micro-geometry of the focusing system.

Similar analysis could be performed for more than two materials in F as well as for the
higher modes with the same orientation of the field vectors (TE20, TE30, etc.). For other modes,
alternative material layout (different from the lamination along the y-axis) may produce better
control. To find out the orientation of the electric field vector in those modes and to choose an
appropriate structure of the focusing material, relevant numerical analysis can be applied.

4. Computation

The approach described above can be implemented as follows. The systems (14) and (19) can
be solved independently. We start with (14) and rewrite it in the form:

u′ = AF,Pu with AF for x ∈ (0, x1) and AP for x ∈ (x1, a/2), (25)

where AF,P denote matrices depending on fF1,2, gF1,2 and fP , gP , respectively (see Appen-
dix), and u = [v p w q]T . Seeking the solution in the form y = eλF,P xξ , we reduce (25) to
the eigenvalue problem:

AF,P ξF,P = λF,P ξF,P , (26)

with four eigenvalues at each subinterval 0 ≤ x ≤ x1 and x1 ≤ x ≤ a
2 . Therefore, the general

solution to (14) may be represented as the linear combinations:

yF,P =




eλ
(1)
F,P xξ

(1)
F1,P1 . . . eλ

(4)
F,P xξ

(4)
F1,P1

... . . .
...

eλ
(1)
F,P xξ

(1)
F4,P4 . . . eλ

(4)
F,P xξ

(4)
F4,P4






C
(1)
F,P

...

C
(4)
F,P


 . (27)

By (27), the system of the boundary conditions (17) may be presented in the matrix form:

BC = 0, (28)

where B is the 8×8-matrix given in Appendix and C is the vector of unknown constants (four
in F and four in P ). Equation (28) possesses non-trivial solutions if detB = 0.

Upon finding the eight constants, we determine the variables {v p w q} and then
these can be inserted into (19) which, in its turn, can be solved with respect to the conjugate
variables {V P W Q}. System (19) can be rewritten in the matrix form:{

U′ = DFU; for x ∈ (0, x1) (a)

U′ = DPU + F; for x ∈ (x1, a/2) (b),
(29)

where DF and DP are matrices depending on fF1,2, gF1,2 and fP , gP , respectively (see Ap-
pendix), and U = [V P W Q]T , and

F =



Gv

0

Gw

0


 ; G = 2√

v2 + w2

(√
v2 + w2 − 1

)
. (30)
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Since the solution of (29a) can be found in the form zF = eλ̄F x ξ̄F , this matrix equation is
equivalent to the eigenvalue problem:

DF ξ̄F = λ̄F ξ̄F , (31)

which holds for the domain occupied by the focusing system F . It provides four eigen-
values defined at [0, x1). So the general solution to (29a) may be represented as the linear
combination:

ZF =




eλ̄
(1)
F x ξ̄

(1)
F1 . . . eλ̄

(4)
F x ξ̄

(4)
F1

... . . .
...

eλ̄
(1)
F x ξ̄

(1)
F4 . . . eλ̄

(4)
F x ξ̄

(4)
F4






C̄
(1)
F

...

C̄
(4)
F


 , (32)

where C̄F is the vector of constants specified by the boundary conditions.
The general solution of (29b) may be found assuming that the fundamental solution is

known for the corresponding homogeneous system

U′ = DPU. (33)

The solution of (29a) can also be found in the form zPh = eλ̄Phx ξ̄Ph , and thus (33) is equivalent
to the eignevalue problem

DP ξ̄
(g)

P = λ̄
(g)

P ξ̄
(g)

P , (34)

which holds for the domain occupied by the processed material P and has four eigenvalues in
the interval (x1, a/2]. The general solution to the last equation can be expressed as:

z(g)P (x) =




eλ̄
(1)
P x ξ̄

(1)
P1 . . . eλ̄

(4)
P x ξ̄

(4)
P1

... . . .
...

eλ̄
(1)
P x ξ̄

(1)
P4 . . . eλ̄

(4)
P x ξ̄

(4)
P4






C̄
(1)
P

...

C̄
(4)
P




= C̄
(1)
P [φ1(x)] + . . .+ C̄

(4)
P [φ4(x)]

(35)

with the constants specified by the boundary conditions. The matrix �(x) of fundamental
solution of (29b) is formed by the vectors [φi(x)].

The particular solution to the non-homogeneous equation (29b) can be written in the form:

z(p)P (x) = �(x)

∫
�−1(x)F(x)dx, (36)

and thus the general solution of (29b) is:

zP = z(g)P (x)+ z(p)P (x) = �(x)C̄(i)
P + �(x)

∫
�−1(x)F(x)dx, (37)

for i = 1, . . . , 4, or, in the matrix form:

zP =




eλ̄
(1)
P x ξ̄

(1)
P1 . . . eλ̄

(4)
P x ξ̄

(4)
P1

... . . .
...

eλ̄
(1)
P x ξ̄

(1)
P4 . . . eλ̄

(4)
P x ξ̄

(4)
P4






C̄
(1)
P

...

C̄
(4)
P


 + J, (38)
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where vector J represents the integral term of (37). With the use of (32) and (38), the system
of the boundary conditions (20) can be reduced to the form:

KC̄ = L, (39)

where K is the 8 × 8 matrix presented in Appendix, and C̄ is a vector of unknown constants.
Equation (39) has non-trivial solutions, unless its determinant is equal to zero; the solution,
that is the vector of constants C̄, can be obtained by Gaussian elimination. The solution of (29)
is therefore completely determined, and the conjugate variables can be found in the domains
F (subinterval 0 ≤ x ≤ x1) and P (subinterval x1 ≤ x ≤ a

2 ). The set of regular and conjugate
variables in F allows us to find H1.

The micro-geometry of the focusing structure is thus specified by the following procedure.
We first assume that m = 0 on the entire interval [0, x1), solve the combined system (14), (19)
with the boundary conditions (17), (20), and calculate the value of H1 on the same interval of
x.

If H1 < 0 on this interval, the solution is achieved by the use of material D2 in the entire
domain F . If H1 is negative, say, for x ∈ [0, x2), x2 < x1, and positive for x ∈ (x2, x1), then
we change the control m on the latter subinterval, assuming that

m =
{

0, 0 ≤ x ≤ x2 ≤ x1

1, x2 ≤ x ≤ x1 .
(40)

We again solve the combined system, etc. After N iterations, we evaluate the set of switch-
ing points x2, x3, . . . . If this set reveals the tendency to become dense on some subinterval
of [0, x1) , then on this subinterval we arrange a singular range, and beyond this subinterval
we place the pure original materials distributed in accordance with the information revealed
through the preceding iterations. The ultimate material deployment involves parts occupied
by pure materials 1 and 2, as well as the parts filled by the laminar composite assembled of
these materials as of original constituents. The volume fraction m(x) will become a variable
characteristic of such a composite; its variability reflects the special design features generated
by the external factors, such as the permittivity of the processed material and the relative
dimensions of the system.

5. Numerical illustrations: lossless layer

The general scheme outlined above can be reduced to a special case when the material in the
domain P in a rectangular applicator is assumed to be lossless. In this case, the requirement
for the controlling material to be lossy (8)–(10) does not hold. We pose the following practical
question: what should be the dielectric constant εF = ε ′

F of the uniform dielectric occupying
the left and right domains F so that the relevant electric fieldEy within the domain P becomes
uniform?

Since the materials in P and F are now lossless, the propagation factor γ is equal to the
phase constant β. Let us consider two configurations of the controlling dielectrics occupying
the lateral spaces either completely, or in part.

5.1. P AND F IN CONTACT

The geometry of this problem is represented by Figure 2. The analysis of this problem shows
that:
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Figure 4. Applicator in Figure 2: permittivity increment (41) versus normalized thickness of the controlling layer
at 2·45 GHz for the standard waveguides WR187/WG12 (a = 48 mm) (1), WR229/WG11A (a = 58 mm) (2),
WR284/WG10 (a = 72 mm) (3), and WR340/WG9A (a = 86 mm) (4).

(i) the uniform field Ey within P is maintained if the effective permittivity εF of the con-
trolling layers in each of the F subdomains x ∈ (0, x1) and x ∈ (x2, a) are uniform; thus,
no composite structures arise there;

(ii) the value of εF exceeds εP , and the permittivity increment+εF = εF−εP depends on the
operating frequency f and location of the processed material according to the formula:

+εF1,2 =
(
h

ω

)2

, (41)

where h is determined by

h =




π

2x1
, for domain F1,

π

2(a − x2)
, for domain F2.

(42)

In a symmetric case, Figure 4 illustrates the dependence between the relative permittivity
increment +ε = +εF/ε0, where ε0 is the permittivity of a vacuum, and the normalized widths
of the controlling layers. One may see that the thicker is the processed material in P , the larger
value of the controlling material in F is required to guarantee the uniform field distribution.

The electric field within the intervals specified in (4) has been calculated without the ad-
ditional requirement (6) and for the fixed value εP = 5·5 and variable values εF . A similar
analysis (though applied for εF < εP ) can be found in [24]. The graphs presented in Figure 5
show that the field becomes uniform for xε(x1, x2) if εF = 6·6 which is consistent with the
value computed from (8).

This illustration shows that the practical implementation of control over the electric field
may be associated with materials D1 and D2 possessing high values of the real part of their
dielectric constants. For example, ε ′

P of the typical microwavable food products is known to
be between 30 and 70 [28, Chapter 5, Appendix 3]. At the same time, as follows from (ii) and
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Figure 5. Magnitude of the relative electric field of the dominant TE10 mode in the WR340/WG9A waveguide
(a = 86 mm) with εP = 5·5 and εF = 4 (1), 5·5 (2), 6·6 (3), 8 (4).

(41), ε ′
F of the efficient controlling materials is expected to be larger than that of the food. If

the thickness of material in domain F is supposed to be small, this leads to further increase
of its dielectric constant. Numerical estimate suggests that the required materials may possess
ε ′
F about 40–150 and ε ′′

F about 0·0005–0·005.

5.2. P AND F SEPARATED

The previous example can be extended to cover a practically significant case when there is
no direct contact between the material [x ∈ (x1, x2)] and the controlling layers [x ∈ (0, x10)

and x ∈ (x20, a), x10 < x1, x20 > x2], like shown in Figure 6. Instead, they are separated by
an empty space (or the space filled by the third material), and the relevant control action is
implemented by a due choice of εF .

The field representation (2) remains the same along with the Helmholtz’s equation (3).
Assuming that the permittivity is equal to ε0 in the space between the focusing and processed
material, we observe that the uniform field in the interval (x1, x2) is given by (6), and the
minimal requirement has the same form (7). The analysis of this problem shows that:

(i) the uniform field Ey within P is maintained if the effective permittivities εF in the x-
direction are uniform in each of the F -subdomains occupied by controlling layers;

(ii) the values of εF1 and εF2 exceed εP and the permittivity increment is determined by (41),
but, instead of (42), h is defined as the root of the equations

√
h cot

(√
hx10

)
= −√|h0|tanh

[√|h0|(x1 − x10)
]
, for domain F1,

√
h cot

[√
h(a − x20)

]
= −√|h0|tanh

[√|h0|(x20 − x2)
]
, for domain F2.

(43)

where h0 = ω2(ε0 − εF ). The curves illustrating the dependence between the increment +ε
and the normalized widths of the controlling layers are shown in Figure 7. The curves come
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Figure 6. Cross-section of a rectangular traveling wave applicator with focusing (F) and processed (P ) materials
separated by air gap.

Figure 7. Applicator in Figure 6: permittivity increment (41) versus normalized thickness of the controlling layer
at 2·45 GHz for various sizes of the air gap (x1 − x10)/a & (x20 − x2)/a = 0·1 (1), 0·2 (2), 0·3 (3), and 0·4 (4).

to the points x10/a = x1/a, or (a − x20)/a = (a − x2)/a (lower points on each curve)
corresponding to the case of no gap between the controlling layers and the processed material.
It is obvious that the air gap produces a notable increase of the permittivity increment required
to make the field in P uniform.

6. Conclusion

This paper gives a design procedure for the focusing dielectric structure that creates a uniform
electric field within a layer of processed material in a rectangular applicator. Presented for
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the dominant (TE10) mode and the centered E-plane dielectric layer, the procedure can be
expanded for the higher modes and more complex configuration of the processed material.

The dominant mode is considered in the supposition that a single-mode regime is main-
tained in a rectangular applicator. However, the multimode wave propagation may generally
emerge in the waveguides filled with dielectric materials. The single-mode wave propagation
will take place in the structures shown in Figures 2 and 6 provided that the dielectric constants
of both processed and controlling materials are not too large.

For larger values of ε ′
P and ε ′

F , the multimode propagation may occur with some finite
number of higher modes existing at one time. The analysis demonstrated above for a dominant
mode may equally be applied in this more complex situation. The procedure will be affected,
however, by the presence of additional parameters measuring the relative amplitudes of the
traveling modes generating the heat release, and these parameters generally may serve as
additional design factors.

The presented analysis suggests that, in order to exclude heating of the controlling material
in F , it would be reasonable to agree on some non-uniformity of the field within the processed
material in P by preserving the controlling material lossless. The degree of non-uniformity
of the field within P in this case is affected by the micro-geometry of the composite structure
in F . The permittivity of each component of the efficient controlling material may be higher
than the one of the processed material.

Appendix

Matrices in the differential equations (25) and (26) have the following structures:

AF =




0 1 0 0

−fFi 0 gFi 0

0 0 0 1

−gFi 0 −fFi 0


 , AP =




0 1 0 0

−fP 0 gP 0

0 0 0 1

−gP 0 −fP 0


 ,

DF =




0 fFi 0 gFi

−1 0 0 0

0 −gFi 0 fFi

0 0 −1 0


 , DP =




0 fP 0 gP

−1 0 0 0

0 −gP 0 fP

0 0 −1 0


 .

Matrices in the systems of the boundary conditions (28) and (38) are represented as fol-
lows:
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B =


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